Arunaa Nagarajan Ganesan

+1 (878) 834 9283 - Portfolio - arunaan@andrew.cmu.edu - linkedin.com/in/arunaan

EDUCATION

Carnegie Mellon University

MS in Biotechnology and Pharmaceutical Engineering

GPA: 3.76/4.00

PSG College of Arts and Science

BSc in Biotechnology

TECHNICAL SKILLS

Pittsburgh, USA

Aug 2023 - Dec 2024

Coimbatore, India

Sep 2020 - Aug 2023

Laboratory Skills: Molecular techniques: Immunofluorescence microscopy, PCR, UV spectrometry, Western Blot, Good laboratory practices, Restriction Digestion, Immunoprecipitation, NTA (Nanoparticle Tracking Assay), Scanning Electron Microscopy, Primary T-cell culture, Flow cytometry, ELISA, Enzyme-Linked ImmunoSpot (ELISpot), Cytotoxicity assays (LDH), T-cell proliferation assays, single-cell RNA sequencing (scRNA-seq) Microbial Techniques: Isolation using Streaking and plating, Cell-Culture, Staining techniques, Tissue culture. Data analysis: GraphPad Prism, FlowJo, Python.

WORK EXPERIENCE

Investigating Tumor-Infiltrating Lymphocytes in Glioblastoma

Pittsburgh, PA

Research Assistant - Glioblastoma T-cell Therapy & Cancer vaccine - Kohanbash Lab

July 2024 - Present

- Expanded TILs by 300% using IL-2 protocols, boosting cytotoxicity 50% above control via neoantigen-driven responses. Tested 12 neoantigens against TILs targeting an antigen with known T cell activity as a control.
- Developed and validated assays to characterize T cell functionality, using western blotting to quantify a 2-fold increase in activation markers (e.g., IFN-gamma) and assess exhaustion markers (e.g., PD-1 expression).
- Utilized flow cytometry with 85% purity in T cell subset identification, leveraging FlowJo for data analysis.
- Conducted single-cell RNA sequencing on 1,000+ TILs, revealing a significant upregulation in key immune response genes, correlating with enhanced anti-tumor cytotoxicity compared to unprimed T cells.
- Assessed T cell cytotoxicity using ELISpot, ELISA, and LDH assays, demonstrating increase in tumor cell lysis.
- Performed statistical analyses of experimental data using GraphPad Prism, providing robust data visualization and quantification of immune responses, supporting conclusions on TIL efficacy. Optimized TIL-neoantigen interactions, resulting in a 25% improvement in immune response targeting in murine glioblastoma models.

Engineering EVs with Surface Quorum Sensing Peptides for Cell Communication

Pittsburgh, PA

Graduate Research Assistant:Streptococcus pneumoniae- Hiller Lab, Carnegie Mellon UniversityJan 2024 - Jun 2024

- Developed and optimized protocols for high-yield isolation of extracellular vesicles (EVs) from Streptococcus pneumoniae using ultracentrifugation and size-exclusion chromatography techniques and cryopreserved them.
- Applied molecular biology techniques, including PCR, gene cloning, and gene knockout, to engineer bacterial strains for targeted EV studies, enabling the analysis of modified EVs for cellular uptake & cellular communication.
- Conducted quantitative assays (Picogreen, Ribogreen, BCA) to measure protein and nucleic acid concentrations, and nanoparticle tracking analysis (NTA) to evaluate EV size and cargo composition for EV engineering.
- Optimally incorporated quorum-sensing peptides onto EV surfaces and assessed their impact on cell signaling.

Discovered novel antimicrobial compounds from natural source: Rosa indica

Coimbatore, India

Pharmaceutical Intern: Natural source, Centre for Bioscience and Nanoscience Research

Jul 2022 - Aug 2022

- Analyzed chemical profiles of Rosa indica leaves using UV spectroscopy (conjugated structures). Performed TLC & identified 33.33% more bands in the ethanol vs. methanol extract, suggesting potential antimicrobial content.
- Evaluated the antimicrobial activity of the extracts by employing Well diffusion & Broth Dilution Assay.
- Utilized a C18 column in Reverse phase High-Performance Liquid Chromatography (RP-HPLC), to confirm and further identify the antimicrobial contents in the Rosa indica leaf extract with ethanol as the mobile phase.

PROJECTS

Fluorescent protein expression in E.coli

Pittsburgh, PA

Carnegie Mellon University

Jan 2024 - Mar 2024

- Engineered *E.coli* to express an unknown fluorescent protein by constructing a plasmid, transforming cells, and inducing expression. Characterized the unknown protein, using SDS- PAGE & UV Vis spectroscopy.
- Identified the unknown fluorescent protein using PCR, sequencing, and fluorescence microscopy.
- Analyzed the combined data using Benchling software and validated the findings from NCBI data.

PUBLICATION

• Defining approaches to mitigate toxicological impacts of pyrogallol on exposure to biological systems Link